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Scientific Update | Brian Steed

«  Photo: Jon Bilous



Lake Elevation (feet)

Figure 1: Elevation of Great Salt Lake South
Arm, 1903-2025 Water-year-end Elevation
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Figure 8: Reservoir Storage in the Great Salt
Lake Basin, 20 Largest Reservoirs, 1989-2025

3,400 —
21200

3,000
2,800
2,600
2,400
2,200

™

< 2,000

o 1,800

h

S 1,600

S

& 1,400 W

1,200
1,000
800
600 u
400
200

NNNNNNNNNNNNNNNNNNN



Figure 9:
Salinity of
Great Salt
Lake South
Arm, 1989-
2025
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Figure 10: Historical Precipitation in
Great Salt Lake Headwaters, 1901-2025
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Figure 10: Historical Air Temperature in
Great Salt Lake Headwaters, 1901-2025
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Figure 11: Bear River Streamflow, 1903-2025
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Volume (KAF)

Figure 11: Weber River Streamflow, 1908-2025
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Volume (KAF)

Figure 11: Jordan River Streamflow, 1902-2025
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Depletion (KAF)

Figure 12: Human Water Depletions

by Type, 1989-2024
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Figure 16: Mineral Extraction
Water Depletions on Great Salt Lake, 1989-2024
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Figure 14:
Residential
Depletions
and

Population,
1989-2024
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Figure 15: Residential
Indoor and Outdoor Depletions
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Depletion (KAF)

Depletion (KAF)

Figure 13: Agriculture and M&I Depletion
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Figure 21: Projected Lake Level Ranges
Under Sustained Additional Inflows

Baseline Scenario Percent of long-term simulations
Average Inflow - 1,665 KAF/year within elevation ranges
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Figure 21: Projected Lake Level Ranges
Under Sustained Additional Inflows

Additional 250 KAF/year Percent of long-term simulations
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Figure 21: Projected Lake Level Ranges
Under Sustained Additional Inflows

Additional 800 KAF/Year Percent of long-term simulations
Average Inflow - 2,465 KAF/year within elevation ranges
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Lightning Talks

What has been done?
Getting water to Great Salt Lake | Anna McEntire

Great Salt Lake dust updates | Kevin Perry

Dust mitigation and water augmentation
Beth Neilson

Agricultural optimization
& water leasing
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What has been done? | Anna McEntire
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Figure 2: Water Dedicated and Delivered to
Great Salt Lake in Acre-feet, 2021-2025
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Getting Water to Great Salt Lake

1. Slowing the decline and creating
a system to refill the lake

2. Managing more than just water levels
. Expanding conservation and leasing capacity

4. Creating local and national support
for Great Salt Lake recovery

5. Building an adaptive management framework

wW



Slowing the decline and creating

Getting Water to Great Salt Lake a system to refill the lake
Water Banking

What haS been dOne? é/ Instream Water Flow
- Amendments
;

e

Expanding conservation

and leasing capacity

» Ag Water Optimization

» M&I Water Efficiency
GSL Watershed
Enhancement Trust

Building an adaptive

management framework
* GSL Commissioner
« Basin Integrated Plan
« Distribution Management Plan-

Managing more than just water
levels

Berm Management

Mineral Extraction



GSL Dust Update| Kevin Perry
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Dust Monitors
at Great Salt
Lake, Salton
Sea, and
Owens Lake,

2025
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State of Utah Response

€M Governor of Utah Budget Request of $650K (ongoing) for a
<300 Spencer J. Cox Utah dust monitoring network

A

mm - Funded $150K (ongoing) for a Utah
mimi | Utah Legislature dust monitoring network

Drafted a comprehensive dust monitoring
plan and hired a “Dust Scientist”

Great Salt Lake  Provided $1M in one-time funding for ai
COMMISSIONER'S OFFICE quality monitoring equipment and
infrastructure




Dust Monitors
at Great Salt
Lake, Salton
Sea, and
Owens Lake,
2026
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Figure 6: Map of the proposed Utah Dust
Observation and Research Network (UDORN)
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UDORN - Deliverables

Dust event frequency and severity (including trends)

Identification of most heavily-impacted communities
* Airborne metal concentrations (including arsenic)

Real-time dust alerts

Determination of actual health risks from exposure to GSL dust
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Purpose

To ensure an ongoing,
resilient water supply within

Great Salt Lake Basin the Great Salt Lake Basin

Integrated Plan




GSLBIP Gap Analysis

OO : . :
N2~ High Priority Research Projects
i)
o 9 o
Storm water study Water requirements for
T1T i GSL shorebirds
R Minimum functional  Quantification of GSL
stream flows evaporative losses

Opportunities and costs
of M&I water wﬁ” ] W

conservation < ® ‘

Opportunities and
costs for agricultural
water optimization

\Qf

Safe yield estimates Options and costs for
from aquifers GSL dust control



Description and Costs of Potential

Dust Control Options

for Great Salt Lake

Prepared in Support
of the Great Salt Lake
Basin Integrated Plan

Public Release
(mid-late January
2026)



Evaluated Dust-Mitigation Options

» Surface wetting

» Temporary impoundment

* Ground-water-based rewetting
 Soill amendments/crusting agents
* Vegetation establishment
 Gravel, mulch, or surface armoring
* Hybrid approaches



Dust Mitigation Study Takeaway Messages

* No single option is sufficient or universally applicable.

 Highly-effective techniques tend to require substantial water
volumes.

« Water-free techniques are generally limited in scale, durability, or
effectiveness.

* Engineered dust-control solutions can be quite expensive
($billions).

Dust mitigation is a complementary strategy intended to reduce neatr-
term risks while longer-term efforts to restore lake levels continue.




Farmington Bay Dust-Mitigation,
Newfoundland Evaporation Basin Beth Neilson
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Farmington Bay
Dust-Mitigation
Opportunities

Mitigation Strategies

1.
2.

mpoundment

_ocal groundwater

Figure: Satellite Imagery of Farmington Bay
at Different Elevations
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Figure: Satellite
Imagery of
Farmington Bay
at Different
Elevations, with
Dust Hot Spots
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Farmington Bay Dust-Mitigation
Opportunities
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Key Findings

1. Impoundment is

nydrologically feasible

2. Dust mitigation potential
IS promising

3. Water evaporation varies
widely by strategy

4. Timing matters for
temporary impoundment




Considerations for Decision-Makers:
Newfoundland Evaporation Basin

Figure 5: Map of Newfoundland Evaporation Basin




Newfoundland Evaporation
Basin

Key Findings

1. The Basin Accumulates
Water Intermittently—in
Highly Variable Amounts

2. Maximum “Potential Water”
Does Not Equal
“Recoverable Water”

3. Realistic Diversion Potential
Is Modest but Meaningful

- Classified Water Pixels

|:l Kilometers
A : Miles




Agricultural Water Optimization and Leasing|
Hannah Freeze




Opportunities and Costs for Agricultural
Water Optimization and Leasing

Agricultural Water
Optimization Pathways

1. lrrigation system upgrades

2. Crop substitution

(may not be as simple as it
sounds)

3. On-farm conveyance
Improvements

4. Land-use transitions

Agricultural Water Leasing in
Practice

* Majority of agricultural water
owned by irrigation companies

 Coordinating with irrigation
companies

e Partial-season leases

« Making Great Salt Lake a place
of use within irrigation
companies



Viewing Agricultural Water as a Commodity

There are many, many layers. We may not be there...YET!

Water doesn’'t move at the speed of Amazon.
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